地球環境史(地球科学系) 現代地球科学(物理系学科)

担当教員:長濱裕幸、武藤潤、海保邦夫

プレートの沈み込み (地震・火山活動)

武藤 潤 muto@tohoku.ac.jp

本日の講義の流れ

沈み込み帯で起こる地震活動・火山噴火活動 を理解する

- 1. 地震とは
- 2. 沈み込み帯での地震・火山分布
- 3. 沈み込み帯と火山活動
- 沈み込み帯で発生する巨大地震と関連 する現象
- 5. まとめと課題

収れん型プレート境界(沈み込み帯)の概念図

沈み込み帯での地震のメカニズム

A プレート境界地震(海溝型地震)

海洋プレートが大陸プレートの下にもぐり込 む。海洋プレートと大陸プレートは摩擦力によ り固着しているため、大陸プレートは引きずり 込まれる。大陸プレートにひずみエネルギーが 蓄えられていく。

ひずみエネルギーが摩擦力に打ち勝って、大 陸プレートがはね上がり、地震が起こる。この とき、津波(>p.178)が発生することもある。内 陸でのゆれが小さくても、プレート境界が大き くすべると大きな津波が発生する場合がある*。 *津波地震という。ゆっくりすべりの一種とされる。

マグニチュード

地震モーメント

$$M_0 = \mu SD$$

$$M_w = \frac{1}{1.5} \log M_0 + c$$

マグニチュードを決める断層面積 プレート境界地震 > 内陸地震

http://hr-inoue.net/zscience/topics/sound/sound.html

地震波伝播とその記録

東大地震研古村先生HP(http://www.eri.u-tokyo.ac.jp/people/furumura/08lwate/)

地震の揺れと断層タイプ

地震のタイプ

震源の分布

Figure 16.15 Distribution of the 14,229 earthquakes with magnitudes equal to or greater than 5 for the period 1980–1990. (Data from National Geophysical Data Center/NOAA)

深さごとの震源の分布

Figure 19.27 Distribution of shallow-, intermediate-, and deep-focus earthquakes. Note that deep-focus earthquakes only occur in association with convergent plate boundaries and subduction zones. (Data from NOAA)

海嶺(正断層型)やトランスフォーム断層(横ずれ断層)に沿って起こる地震の深さは数10kmより浅い。海溝沿いの震源(逆断層型)は海溝から大陸側に向かって規則的に深くなっていて、もっとも深い震源は650kmにも達する。

火山の分布

Figure 4.30 Locations of some of Earth's major volcanoes.

海洋と大陸内部には大きな火山は無い。海洋での例外はアイスランド、カナリー諸島、 ハワイのキラウエアとマウナロア、イースター島などだが、これらの起源はホット・ス ポットというものだ。これに対し、大部分の火山は海溝のすぐ大陸側に分布している。

日本周辺の地震活動

Fig. 2. Epicenter distribution of *M* >4 earthquakes located by USGS for the period 1995–2005 (Headquarters for Earthquake Research Promotion, Ministry of Education, Culture, Sports, Science and Technology, http://www.jishin.go.jp/main/index.html). Focal depths are indicated by the color scale.

収れん型プレート境界の概念図

地震と火山の分布

カンラン岩の溶解曲線

マントル+水 →マグマの発生

Aはマントルに水が存在しないケース Bはマントルに水が多く存在するケース ①は温度が上昇、②は圧力が低下

鉱物の安定領域と脱水

- 沈み込みによって、温
 度圧力が変化し、鉱物
 の安定条件が変化
- ・ 含水鉱物が脱水(-OH
 が抜ける)し、水が発生

たとえば、 緑泥石 (Mg,Fe,Al)6(Al,Si)4O10(OH)8

蛇紋石 2Mg3Si2O5(OH)4

島弧地殻とウェッジマントルの模式図

東北日本弧の地震波速度構造

Nakajima et al. (2001)

火山の構造と噴火のタイプ

伊豆大島の三原山は、赤熱した溶岩の破片をしかけ花火のように噴き上げる。 図2 SiO2の少ない玄武岩質マグマによる噴火

蕓仙普賢岳で発生した火砕流。 図3 SiO₂の多いデーサイト質マグマによる噴火

火山の噴火様式

マグマの粘性	低				· 高	
マグマの温度 (噴出直後)	1100 °C 🗲			000 °C	900 °C	
噴火の様式	 アイスランド・ ハワイ式 割れ目から大量の 溶岩を流出させる。 	 この方法 <	③ ブルカノ式 火口底で固化した溶 岩が、下方からのガ ス噴出により岩片と なって激しく噴き上	④ プリニー式 火道内でマグマが急 激に発泡・膨張し, ガスとマグマの混合 物を高く噴き上げる。	 う プレー式 火砕流を発生。固ま った溶岩を火口か ら突き上げ,溶岩円 頂丘をつくることが 	マグマ水蒸気爆発 上昇してきたマグ マが地下や海底で 水にふれて多量の 水蒸気を発生し,
マグマの 性質	玄武岩質	玄武岩質 ~安山岩質	安山岩質	安山岩~流紋岩質		
代表的な火山と噴火	クラプラ(アイス ランド, 1984) キラウエア (ハワイ, 1997) 伊豆大島(1986~87)	ストロンボリ (イタリア,1985) 秋田駒岳 (1970~71) 伊豆大島(1986~87)	ブルカノ (イタリア,1988 ~90) 浅間山(2004) 阿蘇山(1979)	セントヘレンズ (アメリカ, 1980) ピナツボ (フィリピン, 1991) 浅間山(1783)	プレー (フランス領, 1902) 雲仙普賢岳 (1990~95)	スルツェイ (アイスランド, 1963) 三宅島 (2000)

図4 噴火の様式

広域火山灰の分布図

海山は何故並んでいる?

東端のキラウエアだけが 活火山で、西ほど古くな る。

雄略海山(41My)あたりで 折れ曲がっているのは何 故?

ホットスポットの起源

海山列のマグマの起源は少なく とも数100kmも深い所にある。 マントルと核との境界付近らし い証拠もあって、このような火山 をホットスポットという。

だから、下図のように、ホットス ポットの上をプレートが移動し、 海山列(ホットスポット・トラック) ができると考えればよい。

巨大地震と関連する現象:東北沖地震を例に

海底観測で本震時の大すべりを観測

Horizontal displacements

B Vertical displacements

Sato (2011 Science)

地震のタイプも変化

変動がゆっくり遠くへ及んでゆく (余効変動)

地震後、震源から遠くで大きな変動が起こっている

http://www.asahi.com/articles/photo/AS20161101001080.html

多くの内陸地震が誘発

M9巨大地震と火山噴火

図表 1-2-13 世界の巨大地震と火山噴火

マグニチュードは理科年表による

出典:東京大学地震研究所資料を基に内閣府で作成

南海地震と富士山の関係

まとめ

- 沈み込み帯では、プレートの沈み込みにより、
 巨大地震や火山噴火が発生する。
- ・プレートの固着により、巨大地震が発生する。
- 沈み込む水の存在でマグマが発生し、火山 が形成される。
- ・巨大地震の発生により、周辺での地震活動 や火山活動が促進される。

課題:火山前線の形成

東北日本の火山前線(火山フロント)が、プレート上面深さ100 kmに相当する鉛直上に南北に配列する理由を述べよ。

